Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras.
نویسندگان
چکیده
Hyperactivation of Ras is one of the most common abnormalities in acute myeloid leukemia. In experimental models, Ras inhibits myeloid differentiation, which is characteristic of leukemia; however, the mechanism through which it disrupts hematopoiesis is poorly understood. In multipotent FDCP-mix cells, Ras inhibits terminal neutrophil differentiation, thereby indefinitely extending their proliferative potential. Ras also strongly promotes the sensitivity of these cells to granulocyte-macrophage colony-stimulating factor (GM-CSF). Using this model, we have dissected the signaling elements downstream of Ras to determine their relative contribution to the dysregulation of hematopoiesis. Cells expressing Ras mutants selectively activating Raf (Ras*T35S) or phosphatidylinositol 3-kinase (Ras*Y40C) did not significantly affect differentiation or proliferative capacity, whereas Ras*E37G (which selectively activates RalGEFs) perpetuated proliferation and blocked neutrophil development in a manner similar to that of Ras. Correspondingly, expression of constitutively active versions of these effectors confirmed the overriding importance of Ral guanine nucleotide exchange factors. Cells expressing Ras demonstrated hyperactivation of Ral, which itself was able to exactly mimic the phenotype of Ras, including hypersensitivity to GM-CSF. Conversely, dominant negative Ral promoted spontaneous neutrophil development. Ral, in turn, appears to influence differentiation through multiple effectors. These data show, for the first time, the importance of Ral in regulating differentiation and self-renewal in hematopoietic cells.
منابع مشابه
Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth.
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated ...
متن کاملModel of Structural Equations of Marital Adjustment Based on Self- Differentiation and Cognitive Flexibility Mediated by Coping Strategies
Introduction: The family, as an important institution and provider of individual and social health, can always be threatened by various factors. Therefore, it is necessary to pay attention to marital adjustment as an effective factor in maintaining the marital relationship. The aim of this study was to provide a model of marital adjustment based on self-differentiation and cognitive flexibility...
متن کاملPathway- and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling.
Overactivation of Ras pathways contributes to oncogenesis and metastasis of epithelial cells in several ways, including interference with cell cycle regulation via the CDK inhibitor p27(Kip1) (p27) and disruption of transforming growth factor beta (TGF-beta) anti-proliferative activity. Here, we show that at high expression levels, constitutively active N-Ras induces cytoplasmic mislocalization...
متن کاملThe B cell antigen receptor controls AP-1 and NFAT activity through Ras-mediated activation of Ral.
Signaling by the BCR involves activation of several members of the Ras superfamily of small GTPases, among which is Ras itself. Ras can control the activity of multiple effectors, including Raf, PI3K, and guanine nucleotide exchange factors for the small GTPase Ral. Ras, Raf, and PI3K have been implicated in a variety of processes underlying B cell development, differentiation, and function; ho...
متن کاملThe DNA-binding and transcription-activation abilities of p53 are necessary but not sufficient for its antiproliferation function.
Normal p53 protein suppresses cell proliferation and ras oncogene-induced cell transformation. Missense mutations in the middle conserved conformational domain of p53 decrease its antiproliferation function. In this work, we studied the requirement of the NH2- and COOH-terminal regions of p53 in its antiproliferation function using two independent assays, growth of chronic myelogenous leukemia ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2006